

NEXCERATM Ultra low thermal expansion ceramics

NEXCERATM, a cordierite (2MgO-2Al₂O₃-5SiO₂) based polycrystalline ceramic has been developed as a cutting-edge material having both an extremely low thermal expansion coefficient of < 0.03×10^{-6} /K and superior mechanical properties.

NEXCERA[™] has high dimensional stability for long-term passage and temperature changes as compared to general low thermal expansion glass. NEXCERA[™] is used as calibration tools and primary standards in the field of precision metrology which requires high accuracy.

340 X 70 t Mirror with an aluminum coating

Advantages

Zero Thermal Expansion Coefficient

 $0.0 \pm 0.03 \times 10^{-6}$ /K (at 20°C)

Excellent Dimensional Stability

Long-term passage and heat cycles

Light-weight (Bulk density 2.5 g/cm³)

Lighter than aluminum alloy

High Stiffness (Stiffness 130 GPa)

High stiffness and high strength,

1.5 times that of general low thermal expansion glass

High Accuracy Mirror Surfaces

Average-roughness of less than 1 nm due to pore-less properties

Near-net Shape Sintering

Easy manufacturing of complex shapes by green-machining before sintering

Others

Rust and magnetization free

Thermal expansion ratio

Characteristics

Code	Unit	N113B	N117B
Bulk Density : ρ	g/cm³	2.5	2.55
Flexural Strength @RT : σ	MPa	210	230
Young's Modulus of Elasticity : E	GPa	130	140
Specific rigidity : E/p	GPa/(g/cm ³)	52	55
Fracture Toughness (SEPB)	MPa⋅m¹/2	1.2	1.2
Vickers Hardness HV (98N) @RT	GPa	8.0	8.1
Thermal Expansion Coefficient: α @RT	×10 ⁻⁸ /K	< 0.05	< 0.05
Thermal Conductivity @RT	W/mK	3.7	4.2
Dielectric Constant (1MHz) : ε _r	-	4.7	6.0

Comparison of Characteristics

Bonding Technique

Ultra light-weight mirrors can be attained by bonding together top-plates and ribbed bodies to form boxed structures, free from defects around the bonding layer.

Mirror Polish

By polishing, an extremely smooth surface with an averageroughness of 0.3 nm and flatness of less than $\lambda/10$: 52 nm is achieved.

φ340 mm Flatness: 52nm

Roughness Ra: 0.3 nm

Applications

Calibration Tools and Primary Standards

φ340 X 70 t

Step Gauge 550mm

Ball bar: calibration standard for CMM 980mm

Gear pitch standard

Squareness standard

KROSAKI HARIMA CORPORATION

Ceramics Division

1-1 Higashihama-machi, Yahatanishi-ku,

Kitakyushu-City 806-8586, Japan

TEL: +81-93-641-8035 FAX: +81-93-622-7217

E-mail: jun-sugawara@krosaki.co.jp HP: http://www.krosaki.co.jp/

◆The values shown in table are representative properties, and may not be guaranteed for your design.